REVIEW ARTICLE ON SINDURI (BIXA ORELLANA)

Vd. Radhika R. Kotkar*¹, Vd. M. B. Shende², Vd. Sanjivani Shekokar³ and Vd. Dattu Karande⁴

PG Scholor¹, Guide & Asso. Professor², Head of Department³ and PG Scholor⁴
Department of Dravyaguna, Govt. Ayurved College, Nanded, MH: 431601.

*Corresponding Author: Vd. Radhika R. Kotkar
PG Scholor, Department of Dravyaguna, Govt. Ayurved College, Nanded, MH: 431601.

ABSTRACT
Sinduri (Bixa orellena) one of plant mention in Bhavprakash nighantu. Sinduri belongs to family bixaceae and acharya bhavaprakasha included sinduri in Pushpavarga. Its flowers are very beautiful hence most commonly found in garden. It is native to the tropical America and is found in large quantities from Mexico to Ecuador, Brazil and Bolivia. In india it is cultivated in mysore. Present article deals with botanical and ayurvedic classification, various pharmacological action, cultivation and medicinal uses of sinduri according to ayurveda and modern science.

KEYWORDS- Sinduri, Bixa orellana, Pushpavarga.

INTRODUCTION
Sinduri (Bixa orellana) in todays era most commonly used as an coloring agent. The intense red color of the seed is due to bixin in the seed coat. Sinduri has been used for centuries to preserve and flavor food and it is considered to be mainly a culinary spice, though it does have some traditional medicinal uses that have recently been confirmed by science. Acharya bhavaprakasha mention properties as it is sheeta (cold), it helps to normalise vatiated Pitta dosha and it is used in Visha dosha (toxic condition), Trushna (thust) and Chardi (Vomitting).

Recently varrious research is performed on sinduri. Their fore it is an attempt to provide collective information and repsresnt it in systemic manner.

Sinduri- (Bixa orellana)
Kotkar et al. European Journal of Pharmaceutical and Medical Research

Fruits of Bixa orellana

Vernacular Name
Sanskrit- Sinduri
English- Lipstick plant
Hindi- Latkan
Kannada- Rangamali
Tamil- Sappiraviraj
Oriya- Lotkon
Marathi- Shendri
Gujrati- Sinduri

Botanical Classification
Kingdom- Plantae
Order- Malvales
Family- Bixaceae
Genus- Bixa
Species- B. orellana

Ayurvedic Classification
Cause effect relationship- Karan dravya
Living-non living- Chetana dravya
Constitution- Aap mahabhub pradhan

Origin
Audhhbida

Usage
Aushadhi dravya

Morphology
Kshupa

Rasa
Katu, Kashaya

Virya
Katu

Vipaka
Sheet

Karma
Vish and Chardi dosha hara

Chemical Composition
Bixin (C_{25}H_{30}O_{4}) is a major chemical constituents present in seeds, fat and starch also present in small quantity. Isobixin, beta carotene, ellagic acid, salicylic acid tomentosic acid, orellin, bixein.

Properties and Action
Fruit pulp in small quantity performs Grahi karma and purgative when given in large quantity.

External Morphology
It is a fruiting shrub. Height of plant approximately upto 6-20 feet and age is approximately 60 years.
Leaves
Leaves of this plant are pointed and 5-15 cm long and 4-11 cm wide in size.

Flowers
Flowers occur in vertical upright clusters, which prominently appear above the foliage. Flowers are showy, white or pink, nearly 5 cm broad, with five petals and a dense mass of stamens in the center.

Fruits
Fruit is two valved, ovoid, red in color and spiny, and approx. 2.5 – 5 cm long.

Cultivation
Soil should be prepared in the same manner as for cotton. Seeds, previously softened by soaking in water, are planted in holes or furrows 2.5-3.5 m apart in shaded nurseries. Seeds germinate in 8-10 days. As the young plants develop, they should be protected by artificial shade or intercrops, with increased light as they get older. When 15-25 inches high, they are ready for outplanting, spaced for final distribution at 4.5-6 m apart. Plantings fare well in 60 cm cubed plots filled with well aged farm manure. Water well at planting. Can be intercropped with cassava, corn, and mangle. After 3 months, plantations should be weeded and superfluous plants removed. Except for periodical weeding, the plantation needs little attention. ANAI recommends growing medicinal or culinary herbs, like lemongrass, between the shrubs (DAD, WO2). Collection of seed may begin as early as 18 months, a full crop expected 3-4 years after sowing. Trees remain productive for 10-15 years. Capsules are gathered, usually by hand, when they are reddish and beginning to break open. It is wise to prune branches rather vigorously when harvesting the capsules; pruned plants yield better. Capsules are dried in the shade for about 10 days then exposed to the sun until all have opened. Clusters and seeds are then placed in a bag and beaten with a stick to loosen the seed. Thus, seeds are easily removed from the capsule, and little dye is lost. Seeds are then sifted to separate seed from trash. Seed is again sun-dried 4-6 hours before bagging. For home extraction of dye/spice, pouring hot water over the pulp and seeds to macerate and separate them by pounding with a wooden pestle. Remove seeds, letting the pulp settle, pouring off excess water; dry pulp gradually in the shade. In India, the plant produces throughout the year, with two main crops in March and September. In Hawaii, harvests are in May, September, with two main crops in March and September. The best yields are obtained in January, with about 44 kg/ha for round pod variety and 939 kg/ha for pointed-pod variety. A tree should yield 4.5-5 kg dried seed per year. An average yield of 500-2000 kg/ha per year is satisfactory, but up to 4500 kg/ha have been reported in five-year old fields; 100 kg of seed yield about 5-6 kg of material which contains 12-30% bixin.

Pharmacological actions
ANTIBACTERIAL ACTIVITY
Ps. sumathi and A. Parvathi dealt with antibacterial potential of the crude aqueous and organic extracts from leaves, seeds and empty seed capsules of Sinduri (Bixa orellana) against one Gram-positive and three Gram negative bacteria by using agar diffusion method. The leaf extracts of methanol, dimethyl sulphoxide, ethanol and acetone exhibited potential and significant antibacterial activity against Staphylococcus aureus at 800, 1600; 1600 and 3200 µg/ml, respectively. However, none of the aqueous extracts showed antibacterial activity against the tested bacteria. The extracts of dimethyl sulphoxide and methanol from empty seed capsules also showed effective antibacterial activity against Staphylococcus aureus and Salmonella typhi at 3200 and 800 & 3200 µg/ml, respectively. Various solvents and aqueous extracts of the seeds did not show any appreciable antibacterial activity except in dimethyl sulphoxide solvent extracts. Moderate growth inhibition zone of Salmonella typhi and Staphylococcus aureus in dimethyl sulphoxide was noticed at high concentrations of 6400µg/m.

Hypoglycaemic activity
Animal experiment performed on streptozocin induced diabetic dogs, and it was found that decrease blood glucose levels in fasting normoglycaemic and streptozotocin-induced diabetic dogs. In addition, in normal dogs, it suppressed the postprandial rise in blood glucose after an oral glucose load. Interestingly, the extract also caused an increase in insulin-to-glucose ratio in normal dogs. Increased insulin levels were not due to increased insulin synthesis as after 1-h residence time and half-hour postprandial, decreased C-peptide levels was also observed.

Anti-hyperlipidemic Activity
Aqueous extract of outer seed coating of Sinduri (Bixa orellana) shows hypocholesteromic activity. In this study Male Fisher rats were divided into three groups (n=12): C group, fed standard diet and water; H group, fed high-lipid diet and water and; HU group, with high-lipid diet and aqueous annatto extract for 60 days. The treatment with annatto extract in animals fed with the high-lipid diet lowered the LDL- and total cholesterol and raised the HDL-cholesterol, suggesting a hypocholesterolemic effect. Neither high-fat diet nor aqueous annatto extract had any significant effect on serum levels of albumin or serum activities of transaminases which suggested that no liver injury was induced.

Diuretic Activity
The present investigation was aimed at investigating the diuretic activity of Bixa orellana Linn. leaves. The dried leaf powder was subjected to successive Soxhlet extraction with petroleum ether, chloroform, ethyl acetate, methanol and water. Among these, petroleum ether, methanolic and aqueous extracts were investigated for diuretic activity in Wistar rats using standard
methods. The diuretic activity was assessed in terms of urine output and levels of sodium, potassium and chloride in urine. The results obtained revealed that the methanolic extract showed significant diuretic activity at a dose of 500 mg/kg body weight by increasing the total volume of urine and levels of sodium, potassium and chloride in urine when compared to standard drug, Furosemide and Arachis oil as control and vehicle for the extracts.

Hepatoprotective activity
Rajib ahsam et al. conducted animal study on Swiss albino rats for hepatoprotective activity of Bixa orellana. In their study it was found that methanolic extract of Bixa orellana shows highly significant result on experimental animal and assumed that the effect of Bixa orellana extract on liver protection is related to glutathione-mediated detoxification as well as free radical suppressing activity.

Antiparasitic activity
In vitro study was conducted on Leishmania amazonensis (M2269) samples and evaluated by smears analyses (counting, availability and mobility) and by Giemsa staining method (presence of cytoplasmic granules, nuclear structure and kinetoplast). In this study it is observed that Hydroethanolic extracts of Bixa orellana Leaves, stem and roots were shown to present antiparasitic activity.

Medicinal Uses
According to Ayurveda
Root bark is used in fever
Seeds are useful in syphilis
Decoction of leaves are useful in Kamala(Jaundice)

REFERENCES